ag平台官网-ag平台官网手机-ag平台官网手机客户端

【A】所以自己有时间就上网找些ag平台官网游戏来玩,ag平台官网手机拥有着非常专业的设计与品质,ag平台官网手机客户端为广大足球投注爱好者提供足球投注技巧、足球投注规则等服务,不断追求最佳品质。

来自 生命科学 2019-09-29 06:18 的文章
当前位置: ag平台官网 > 生命科学 > 正文

新型纳米凝胶能阻断癌细胞耐药基因,苏州医工

新型水凝胶提升癌症协同治疗效率

在癌症初期,化疗通常能缩小肿瘤,但如果癌细胞产生了耐药性,肿瘤还会再次长大。最近,美国麻省理工学院开发出一种新型纳米凝胶,能帮助阻断造成耐药性的基因,然后再次进行化疗,攻击那些已被“解除武装”的肿瘤。相关论文发表在近期美国《国家科学院学报》上。

肝癌是危害我国人民生命健康的主要恶性肿瘤之一,由于其病情隐匿、潜伏期长、肿瘤生长迅速,且肝癌内在的耐药性以及放化疗后产生的炎症肿瘤微环境,使得治疗5年内肝癌的复发率接近100%,且常伴随复发的转移使得肝癌患者五年生存率不足5%。由于进展期肝癌高度恶性,单一运用外科手术、化疗、放疗、热疗以及免疫治疗等常规手段均不能有效控制肝癌的发展,故多学科和规范化的综合治疗成为了肝癌治疗的必然趋势。化疗是临床上治疗肝癌的重要手段。然而,由于其靶向性差,毒副作用大,治疗效率低,限制了其在临床上的进一步应用。近些年来,化疗结合其他治疗手段的综合治疗策略吸引了广大研究者的注意。这种多模式治疗不仅能够提高癌症治疗的整体效果,还能够克服单一治疗模式的缺陷。

本报讯(记者杨保国 通讯员周慧)近日,合肥工业大学科研团队成功研发出一种新型可注射水凝胶,通过对肿瘤局部长效可控的药物释放,实现了肿瘤治疗效率的大幅提升,为癌症协同治疗提供了一种新的理论方法。相关成果发表在《材料视野》上。

据物理学家组织网日前报道,这种材料由嵌在水凝胶中的金纳米粒子构成,金纳米粒子外面涂有一层DNA链,其序列与MRP1信使RNA的序列互补,mRNA负责把DNA指令传递到其他细胞。凝胶可以注射或植入肿瘤,植入后会覆盖在肿瘤细胞外。这种局部注入的方式会保护粒子不被分解,还能长期缓释药物。

在众多治疗模式中,光热治疗法是利用近红外光直接照射肿瘤部位,并通过光敏剂将光能转化成热能,从而有效地杀死肿瘤细胞而不引起系统毒性。因此该疗法被公认为一种无侵害的治疗模式。研究表明,光热治疗和化疗具有很好的协同效果。因此,化疗结合光热治疗具有很好的临床转化潜能。然而,如何实现同时将精准剂量的化疗药物和光敏剂输送到肿瘤部位,以达到最大的治疗效果,成为了这种综合治疗的难题。

局部化疗通过将药物直接注入肿瘤部位,能够在提高化疗效率的同时降低全身的毒副反应。由亲水性高分子通过一定的化学或物理交联形成的水凝胶,被认为是此类治疗药物的有效载体。然而,目前分子型水凝胶材料仍存在控制药物释放能力不强、药物低浓度缓慢释放易引起肿瘤耐药性等弱点。

MRP1基因是诸多能帮肿瘤细胞对化疗药物产生耐药性的基因之一。MRP1编码蛋白就像个泵一样,从肿瘤细胞中清除抗癌药,使之无法发挥效力。这种“泵”对多种药均有效,包括常用的抗癌药阿霉素,但对5-氟尿嘧啶是无效的。

最近,中国科学院苏州生物医学工程技术研究所检验室研究员董文飞课题组的王政等人开发出一种纳米粒子——Janus型金介孔二氧化硅纳米粒子。利用该粒子担载化疗药物阿霉素,成功实现了对肝癌的化疗和光热治疗的协同治疗。

合肥工业大学查正宝课题组与陆杨课题组合作,创新性地通过调控溶液的酸碱度,诱导明胶蛋白纳米粒子表面由负电荷反转为正电荷,使其与带负电荷的类黑色素聚多巴胺粒子相互吸引,从而制备出质地均一的新型可注射水凝胶。

研究人员把纳米粒子外面的DNA链称为“纳米信标”,它们折叠成一种像发卷似的结构。在癌细胞中,当DNA遇到了与其匹配的mRNA序列时,会阻止它产生更多的MRP1蛋白分子,同时折叠的DNA链打开,释放出其中的5-氟尿嘧啶。当MRP1蛋白不再产生时,药物就会攻击肿瘤细胞的DNA。

Janus型金介孔二氧化硅纳米粒子是由金纳米棒和介孔二氧化硅两部分组成。金纳米棒作为光敏剂可以通过表面等离子共振效应诱导近红外光转化成热能杀死肿瘤细胞,而介孔二氧化硅由于其表面可修饰性和极好的介孔性质,可以用于担载运输化疗药物。这种复合型纳米粒子可以将光敏剂和化疗药物同时输送到肿瘤部位,发挥了两种模式协同治疗的效果。且该纳米粒子相比于传统的核壳结构,具有明显的结构优势。即金纳米棒裸露在外,与介孔二氧化硅互不干扰,因此相比于被二氧化硅包裹着的金纳米棒具有更强的光热转化能力。

实验结果表明,由于对肿瘤弱酸性微环境及较高浓度的基质金属蛋白酶高度敏感,这一新型水凝胶在包载化疗药物阿霉素后注入肿瘤组织,可实现肿瘤局部长效的药物释放。同时,其纳米组成单元中类黑色素聚多巴胺粒子的存在,使该材料可同时实现近红外激光介导的热促药物释放及肿瘤的热化疗协同治疗,提高肿瘤的治疗效率。

“在癌症治疗中,耐药性是一个巨大障碍,也是化疗在许多情况下效果不好的原因。”论文第一作者、MIT医学工程与科学学院博士后乔·康德说,“当我们使基因沉默后,细胞就失去耐药性,此时释放出药物就能再次发挥功效。”

本课题组通过实验,探讨了这种Janus型金介孔二氧化硅纳米载药平台在肝癌协同治疗上的潜能。实验结果表明,研究制备的Janus型金介孔二氧化硅纳米粒子具有均一的形貌,极好的表面等离子共振波长和极高的表面积。载药后的纳米粒子不仅展现了高的药物担载能力,且呈现了pH响应性释药的特点。即在酸性条件下缓慢释放药物,在中性条件下几乎不释放药物。这意味着该纳米载药系统对微环境呈酸性的肿瘤细胞具有更强的杀伤力,而对正常细胞则几乎没有副作用。在细胞实验中,协同治疗组对人肝癌HepG2细胞的抑制率明显高于化疗组和光热治疗组,而对正常人肝细胞HL-7702展现了较低的杀伤性。因此,可以得出结论:Janus金介孔二氧化硅纳米载药平台具有高效低毒的抗肿瘤特征。相关工作已发表在RSC advance,2016, 6, 44498–44505 (SCI, IF=3.289)。

相关论文信息: DOI:10.1039/C9MH00020H

研究人员在人乳腺肿瘤的小鼠身上进行实验,用纳米凝胶来阻断多药耐药蛋白MRP1基因,能使MRP1基因沉默长达两周,并持续释放化疗药物5-氟尿嘧啶,使肿瘤缩小了90%。

文章链接

《中国科学报》 (2019-05-14 第1版 要闻)

在感知MRP1蛋白和释放5-氟尿嘧啶时,这种材料会发出不同波长的荧光,让研究人员能看到细胞内部发生了什么。所以它还能用于诊断,如探测肿瘤细胞中特定的癌症相关基因是否被激活。

图片 1

研究人员指出,这种方法还可用于释放任意种类的药物,或用于阻断任何癌症相关基因。“你可以瞄准任何基因标记来释放药物,不一定和耐药性路径相关。这是一种通用的双重治疗平台。”

图1为Janus型金介孔二氧化硅纳米粒子的形貌性质的表征a)透射电镜b)紫外吸收峰c)近红外光诱导纳米粒子的升温情况d)不同pH下阿霉素释放情况。如图所示,该纳米粒子展现了均一的形貌,强的近红外吸收,高效的光热转换能力和pH响应性释药的特点。

论文高级作者、IMES研究员兼哈佛大学副教授娜塔莉·阿蒂斯说。目前,他们正用此方法来使刺激胃部肿瘤转移到肺部的基因沉默。

图片 2

图2为Janus型纳米粒子的生物相容性测定a) 细胞内吞机制的研究b)生物电镜c)空载的粒子的细胞毒性。由此可见,该纳米粒子可以通过溶酶体进入细胞,且空载的纳米粒子具有毒性低的特点。

图片 3

图3为Janus型金介孔二氧化硅载药系统在HepG2细胞内药物的释放。相比于单纯阿霉素,Janus型金介孔二氧化硅载药系统释放的阿霉素更多。

图片 4

图4为Janus金介孔二氧化硅纳米粒子担载阿霉素的细胞生长抑制情况。由此可见,相比于单纯阿霉素组,Janus型金介孔二氧化硅纳米载药系统对肿瘤细胞杀伤效果更强。而在正常细胞中,该纳米载药系毒性低于阿霉素组。

图片 5

图5为Janus型金介孔纳米载药系统协同治疗的效果。光热治疗效果呈时间依赖性。相比于化疗组和光热治疗组,协同治疗组展现了更强的抗肿瘤效果和更低的毒副作用。

图片 6

图片 7

图6为活死细胞染色对比不同组的细胞杀伤情况。在协同治疗组中,死亡的肿瘤细胞最多。而对于正常细胞的损伤,协同治疗组明细低于阿霉素组。由此可以得出,该纳米载药系统具治疗效果强,毒副作用小的特点。

本文由ag平台官网发布于生命科学,转载请注明出处:新型纳米凝胶能阻断癌细胞耐药基因,苏州医工

关键词: